Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474822

RESUMO

Alcoholic liver disease (ALD) is primarily caused by long-term excessive alcohol consumption. Cyanidin-3-O-glucoside (C3G) is a widely occurring natural anthocyanin with multiple biological activities. This study aims to investigate the effects of C3G isolated from black rice on ALD and explore the potential mechanism. C57BL/6J mice (male) were fed with standard diet (CON) and Lieber-DeCarli liquid-fed (Eth) or supplemented with a 100 mg/kg/d C3G Diet (Eth-C3G), respectively. Our results showed that C3G could effectively ameliorate the pathological structure and liver function, and also inhibited the accumulation of liver lipids. C3G supplementation could partially alleviate the injury of intestinal barrier in the alcohol-induced mice. C3G supplementation could increase the abundance of Norank_f_Muribaculaceae, meanwhile, the abundances of Bacteroides, Blautia, Collinsella, Escherichia-Shigella, Enterococcus, Prevotella, [Ruminococcus]_gnavus_group, Methylobacterium-Methylorubrum, Romboutsia, Streptococcus, Bilophila, were decreased. Spearman's correlation analysis showed that 12 distinct genera were correlated with blood lipid levels. Non-targeted metabolic analyses of cecal contents showed that C3G supplementation could affect the composition of intestinal metabolites, particularly bile acids. In conclusion, C3G can attenuate alcohol-induced liver injury by modulating the gut microbiota and metabolites, suggesting its potential as a functional food ingredient against alcoholic liver disease.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Camundongos , Masculino , Animais , Antocianinas/farmacologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Glucosídeos/farmacologia
2.
Plants (Basel) ; 13(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38475470

RESUMO

Plant-plant interactions are a central driver for plant coexistence and community assembly. Chemically mediated plant-plant interactions are represented by allelopathy and allelobiosis. Both allelopathy and allelobiosis are achieved through specialized metabolites (allelochemicals or signaling chemicals) produced and released from neighboring plants. Allelopathy exerts mostly negative effects on the establishment and growth of neighboring plants by allelochemicals, while allelobiosis provides plant neighbor detection and identity recognition mediated by signaling chemicals. Therefore, plants can chemically affect the performance of neighboring plants through the allelopathy and allelobiosis that frequently occur in plant-plant intra-specific and inter-specific interactions. Allelopathy and allelobiosis are two probably inseparable processes that occur together in plant-plant chemical interactions. Here, we comprehensively review allelopathy and allelobiosis in plant-plant interactions, including allelopathy and allelochemicals and their application for sustainable agriculture and forestry, allelobiosis and plant identity recognition, chemically mediated root-soil interactions and plant-soil feedback, and biosynthesis and the molecular mechanisms of allelochemicals and signaling chemicals. Altogether, these efforts provide the recent advancements in the wide field of allelopathy and allelobiosis, and new insights into the chemically mediated plant-plant interactions.

3.
Angew Chem Int Ed Engl ; 63(11): e202318595, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38224211

RESUMO

Achieving a more balanced charge transport by morphological control is crucial in reducing bimolecular and trap-assisted recombination and enhancing the critical parameters for efficient organic solar cells (OSCs). Hence, a facile strategy is proposed to reduce the crystallinity difference between donor and acceptor by incorporating a novel multifunctional liquid crystal small molecule (LCSM) BDTPF4-C6 into the binary blend. BDTPF4-C6 is the first LCSM based on a tetrafluorobenzene unit and features a low liquid crystal phase transition temperature and strong self-assembly ability, conducive to regulating the active layer morphology. When BDTPF4-C6 is introduced as a guest molecule into the PM6 : Y6 binary, it exhibits better compatibility with the donor PM6 and primarily resides within the PM6 phase because of the similarity-intermiscibility principle. Moreover, systematic studies revealed that BDTPF4-C6 could be used as a seeding agent for PM6 to enhance its crystallinity, thereby forming a more balanced and favourable charge transport with suppressed charge recombination. Intriguingly, dual Förster resonance energy transfer was observed between the guest molecule and the host donor and acceptor, resulting in an improved current density. This study demonstrates a facile approach to balance the charge mobilities and offers new insights into boosting the efficiency of single-junction OSCs beyond 20 %.

4.
Adv Mater ; : e2313105, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279607

RESUMO

Although a suitable vertical phase separation (VPS) morphology is essential for improving charge transport efficiency, reducing charge recombination, and ultimately boosting the efficiency of organic solar cells (OSCs), there is a lack of theoretical guidance on how to achieve the ideal morphology. Herein, a relationship between the molecular structure and the VPS morphology of pseudo-planar heterojunction (PPHJ) OSCs is established by using molecular surface electrostatic potential (ESP) as a bridge. The morphological evolution mechanism is revealed by studying four binary systems with vary electrostatic potential difference (∆ESP) between donors (Ds) and acceptors (As). The findings manifest that as ∆ESP increases, the active layer is more likely to form a well-mixed phase, while a smaller ∆ESP favors VPS morphology. Interestingly, it is also observed that a larger ∆ESP leads to enhanced miscibility between Ds and As, resulting in higher non-radiative energy losses (ΔE3 ). Based on these discoveries, a ternary PPHJ device is meticulously designed with an appropriate ∆ESP to obtain better VPS morphology and lower ΔE3 , and an impressive efficiency of 19.09% is achieved. This work demonstrates that by optimizing the ΔESP, not only the formation of VPS morphology can be controlled, but also energy losses can be reduced, paving the way to further boost OSC performance.

5.
Mol Psychiatry ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267620

RESUMO

This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.

6.
Front Artif Intell ; 6: 1213620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928449

RESUMO

Background: Due to the lower reliability of laboratory tests, skin diseases are more suitable for diagnosis with AI models. There are limited AI dermatology diagnostic models combining images and text; few of these are for Asian populations, and few cover the most common types of diseases. Methods: Leveraging a dataset sourced from Asia comprising over 200,000 images and 220,000 medical records, we explored a deep learning-based system for Dual-channel images and extracted text for the diagnosis of skin diseases model DIET-AI to diagnose 31 skin diseases, which covers the majority of common skin diseases. From 1 September to 1 December 2021, we prospectively collected images from 6,043 cases and medical records from 15 hospitals in seven provinces in China. Then the performance of DIET-AI was compared with that of six doctors of different seniorities in the clinical dataset. Results: The average performance of DIET-AI in 31 diseases was not less than that of all the doctors of different seniorities. By comparing the area under the curve, sensitivity, and specificity, we demonstrate that the DIET-AI model is effective in clinical scenarios. In addition, medical records affect the performance of DIET-AI and physicians to varying degrees. Conclusion: This is the largest dermatological dataset for the Chinese demographic. For the first time, we built a Dual-channel image classification model on a non-cancer dermatitis dataset with both images and medical records and achieved comparable diagnostic performance to senior doctors about common skin diseases. It provides references for exploring the feasibility and performance evaluation of DIET-AI in clinical use afterward.

7.
Small ; : e2305977, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919095

RESUMO

Additive engineering is widely utilized to optimize film morphology in active layers of organic solar cells (OSCs). However, the role of additive in film formation and adjustment of film morphology remains unclear at the molecular level. Here, taking high-efficiency Y6-based OSC films as an example, this work thus employs all-atom molecular-dynamics simulations to investigate how introduction of additives with different π-conjugation degree thermodynamically and dynamically impacts nanoscale molecular packings. These results demonstrate that the van der Waals (vdW) interactions of the Y6 end groups with the studied additives are strongest. The larger the π-conjugation degree of the additive molecules, the stronger the vdW interactions between additive and Y6 molecules. Due to such vdW interactions, the π-conjugated additive molecules insert into the neighboring Y6 molecules, thus opening more space for relaxation of Y6 molecules to trigger more ordered packing. Increasing the interactions between the Y6 end groups and the additive molecules not only accelerates formation of the Y6 ordered packing, but also induces shorter Y6-intermolecular distances. This work reveals the fundamental molecular-level mechanism behind film formation and adjustment of film morphology via additive engineering, providing an insight into molecular design of additives toward optimizing morphologies of organic semiconductor films.

8.
Front Immunol ; 14: 1252879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954615

RESUMO

Introduction: The novel low-dose anti-thymocyte (ATG, 5 mg/kg) plus low-dose post-transplant cyclophosphamide (PTCy, 50 mg/kg) (low-dose ATG/PTCy)-based regimen had promising activity for prevention of graft-versus-host disease (GVHD) in haploidentical-peripheral blood stem cell transplantation (haplo-PBSCT), but its impacts on long-term outcomes remain to be defined. Methods: We performed a large sample, long-term follow-up retrospective study to evaluate its efficacy for GVHD prophylaxis. Results: The study enrolled 260 patients, including 162 with myeloid malignancies and 98 with lymphoid malignancies. The median follow-up time was 27.0 months. For the entire cohort, the cumulative incidences (CIs) of grade II-IV and III-IV acute GVHD (aGVHD) by 180 days were 13.46% (95% CI, 9.64%-17.92%) and 5.77% (95% CI, 3.37%-9.07%); while total and moderate/severe chronic GVHD (cGVHD) by 2 years were 30.97% (95% CI, 25.43%-36.66%) and 18.08% (95% CI, 13.68%-22.98%), respectively. The 2-year overall survival (OS), relapse-free survival (RFS), GVHD-free, relapse-free survival (GRFS), non-relapse mortality (NRM), and CIs of relapse were 60.7% (95% CI, 54.8%-67.10%), 58.1% (95% CI, 52.2%-64.5%), 50.6% (95% CI, 44.8-57.1%), 23.04% (95% CI, 18.06%-28.40%), and 18.09% (95% CI, 14.33%-23.97%, respectively. The 1-year CIs of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) reactivation were 43.46% (95% CI, 37.39%-49.37%) and 18.08% (95% CI, 13.68%-22.98%), respectively. In multivariate analysis, the disease status at transplantation was associated with inferior survivor outcomes for all patients and myeloid and lymphoid malignancies, while cGVHD had superior outcomes for all patients and myeloid malignancies, but not for lymphoid malignancies. Discussion: The results demonstrated that the novel regimen could effectively prevent the occurrence of aGVHD in haplo-PBSCT.


Assuntos
Infecções por Vírus Epstein-Barr , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Transplante de Células-Tronco de Sangue Periférico , Células-Tronco de Sangue Periférico , Humanos , Soro Antilinfocitário/uso terapêutico , Transplante de Células-Tronco de Sangue Periférico/efeitos adversos , Seguimentos , Estudos Retrospectivos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Infecções por Vírus Epstein-Barr/complicações , Células-Tronco de Sangue Periférico/patologia , Herpesvirus Humano 4 , Ciclofosfamida/uso terapêutico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/patologia , Neoplasias/tratamento farmacológico
9.
Infect Dis Ther ; 12(8): 2103-2115, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37541984

RESUMO

INTRODUCTION: Unbiased metagenomic next-generation sequencing (mNGS) has been used for infection diagnosis. In this study, we explored the clinical diagnosis value of mNGS for pulmonary complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS: From August 2019 to June 2021, a prospective study was performed to comparatively analyze the pathogenic results of mNGS and conventional tests for bronchoalveolar lavage fluid (BALF) from 134 cases involving 101 patients with pulmonary complications after allo-HSCT. RESULTS: More pathogens were identified by mNGS than with conventional tests (226 vs 120). For bacteria, the diagnostic sensitivity (P = 0.144) and specificity (P = 0.687) were similar between the two methods. For fungus except Pneumocystis jirovecii (PJ), conventional tests had a significantly higher sensitivity (P = 0.013) with a similarly high specificity (P = 0.109). The sensitivities for bacteria and fungi could be increased with the combination of the two methods. As for PJ, both the sensitivity (100%) and specificity (99.12%) of mNGS were very high. For viruses, the sensitivity of mNGS was significantly higher (P = 0.021) and the negative predictive value (NPV) was 95.74% (84.27-99.26%). Pulmonary infection complications accounted for 90.30% and bacterium was the most common pathogen whether in single infection (63.43%) or mixed infection (81.08%). The 6-month overall survival (OS) of 88.89% in the early group (mNGS ≤ 7 days) was significantly higher than that of 65.52% (HR 0.287, 95% CI 0.101-0.819, P = 0.006) in the late group (mNGS > 7 days). CONCLUSIONS: mNGS for BALF could facilitate accurate and fast diagnosis for pulmonary complications. Early mNGS could improve the prognosis of patients with pulmonary complications after allo-HSCT. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT04051372.

10.
Angew Chem Int Ed Engl ; 62(35): e202304931, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37431837

RESUMO

Reducing non-radiative recombination energy loss (ΔE3 ) is one key to boosting the efficiency of organic solar cells. Although the recent studies have indicated that the Y-series asymmetric acceptors-based devices featured relatively low ΔE3 , the understanding of the energy loss mechanism derived from molecular structure change is still lagging behind. Herein, two asymmetric acceptors named BTP-Cl and BTP-2Cl with different terminals were synthesized to make a clear comparative study with the symmetric acceptor BTP-0Cl. Our results suggest that asymmetric acceptors exhibit a larger difference of electrostatic potential (ESP) in terminals and semi-molecular dipole moment, which contributes to form a stronger π-π interaction. Besides, the experimental and theoretical studies reveal that a lower ESP-induced intermolecular interaction can reduce the distribution of PM6 near the interface to enhance the built-in potential and decrease the charge transfer state ratio for asymmetric acceptors. Therefore, the devices achieve a higher exciton dissociation efficiency and lower ΔE3 . This work establishes a structure-performance relationship and provides a new perspective to understand the state-of-the-art asymmetric acceptors.

11.
Nanomicro Lett ; 15(1): 92, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036549

RESUMO

Morphology is of great significance to the performance of organic solar cells (OSCs), since appropriate morphology could not only promote the exciton dissociation, but also reduce the charge recombination. In this work, we have developed a solid additive-assisted layer-by-layer (SAA-LBL) processing to fabricate high-efficiency OSCs. By adding the solid additive of fatty acid (FA) into polymer donor PM6 solution, controllable pre-phase separation forms between PM6 and FA. This intermixed morphology facilitates the diffusion of acceptor Y6 into the donor PM6 during the LBL processing, due to the good miscibility and fast-solvation of the FA with chloroform solution dripping. Interestingly, this results in the desired morphology with refined phase-separated domain and vertical phase-separation structure to better balance the charge transport /collection and exciton dissociation. Consequently, the binary single junction OSCs based on PM6:Y6 blend reach champion power conversion efficiency (PCE) of 18.16% with SAA-LBL processing, which can be generally applicable to diverse systems, e.g., the PM6:L8-BO-based devices and thick-film devices. The efficacy of SAA-LBL is confirmed in binary OSCs based on PM6:L8-BO, where record PCEs of 19.02% and 16.44% are realized for devices with 100 and 250 nm active layers, respectively. The work provides a simple but effective way to control the morphology for high-efficiency OSCs and demonstrates the SAA-LBL processing a promising methodology for boosting the industrial manufacturing of OSCs.

12.
Adv Mater ; 35(30): e2300820, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37073407

RESUMO

Terpolymerization and regioisomerization strategies are combined to develop novel polymer donors to overcome the difficulty of improving organic solar cells (OSCs) performance. Two novel isomeric units, bis(2-hexyldecyl)-2,5-bis(4-chlorothiophen-2-yl)thieno[3,2-b]thiophene-3,6-dicarboxylate (TTO) and bis(2-hexyldecyl) 2,5-bis(3-chlorothiophen-2-yl)thieno[3,2-b]thiophene-3,6-dicarboxylate (TTI), are obtained and incorporated into the PM6 backbone via random copolymerization to form a series of terpolymers. Interestingly, it is found that different chlorine (Cl) substituent positions can significantly change the molecular planarity and electrostatic potential (ESP) owing to the steric hindrance effect of the heavy Cl atom, which leads to different molecular aggregation behaviors and miscibility between the donor and acceptor. The TTO unit features a higher number of multiple S···O non-covalent interactions, more positive ESP, and fewer isomer structures than TTI. As a result, the terpolymer PM6-TTO-10 exhibits a much better molecular coplanarity, stronger crystallinity, more obvious aggregation behavior, and proper phase separation in the blend film, which are conducive to more efficient exciton dissociation and charge transfer. Consequently, the PM6-TTO-10:BTP-eC9-based OSCs achieve a champion power conversion efficiency of 18.37% with an outstanding fill factor of 79.97%, which are among the highest values reported for terpolymer-based OSCs. This work demonstrates that terpolymerization combined with Cl regioisomerization is an efficient approach for achieving high-performance polymer donors.

13.
Cell Transplant ; 32: 9636897231157054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36905323

RESUMO

The contribution of lymphocyte subset composition of the graft on the outcomes following haploidentical peripheral blood stem cell transplantation (haploPBSCT) is not fully elucidated. We retrospectively analyzed 314 patients with hematological malignancies who underwent haploPBSCT from 2016 to 2020 in our center. We obtained a cutoff value of CD3+ T cell dose (2.96 × 108/kg) that separated the risk of II-IV acute graft-versus-host disease (aGvHD) and divided patients into the low CD3+ T cell dose group (CD3+ low) and the high CD3+ T cell dose (CD3+ high) group. Significantly higher incidences of I-IV aGvHD, II-IV aGvHD, and III-IV aGvHD were identified in the CD3+ high group (50.8%, 19.8%, and 8.1% in the high group, 23.1%, 6.0%, and 0.9% in the low group, P < 0.0001, P = 0.002, and P = 0.02, respectively). We found that CD4+ T cell and its naïve and memory subpopulations of grafts had a significant impact on aGvHD (P = 0.005, P = 0.018, and P = 0.044). Besides, we found an inferior reconstitution of natural killer (NK) cells in the CD3+ high group than in the low group within the first-year posttransplant (239 cells/µL vs 338 cells/µL, P = 0.0003). No differences in engraftment, chronic GvHD (cGvHD), relapse rate, transplant-related mortality (TRM), and overall survival (OS) were identified between the two groups. In conclusion, our study found that a high CD3+ T cell dose led to a high risk of aGvHD and inferior reconstitution of NK cells in the haploPBSCT setting. In the future, carefully manipulating the composition of lymphocyte subsets of grafts might reduce the risk of aGvHD and improve the transplant outcome.


Assuntos
Doença Enxerto-Hospedeiro , Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco de Sangue Periférico , Humanos , Transplante de Células-Tronco de Sangue Periférico/efeitos adversos , Estudos Retrospectivos , Recidiva Local de Neoplasia , Doença Enxerto-Hospedeiro/etiologia , Subpopulações de Linfócitos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Condicionamento Pré-Transplante
14.
J Am Chem Soc ; 145(10): 5909-5919, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36877211

RESUMO

Organic photovoltaics (OPVs) have achieved great progress in recent years due to delicately designed non-fullerene acceptors (NFAs). Compared with tailoring of the aromatic heterocycles on the NFA backbone, the incorporation of conjugated side-groups is a cost-effective way to improve the photoelectrical properties of NFAs. However, the modifications of side-groups also need to consider their effects on device stability since the molecular planarity changes induced by side-groups are related to the NFA aggregation and the evolution of the blend morphology under stresses. Herein, a new class of NFAs with local-isomerized conjugated side-groups are developed and the impact of local isomerization on their geometries and device performance/stability are systematically investigated. The device based on one of the isomers with balanced side- and terminal-group torsion angles can deliver an impressive power conversion efficiency (PCE) of 18.5%, with a low energy loss (0.528 V) and an excellent photo- and thermal stability. A similar approach can also be applied to another polymer donor to achieve an even higher PCE of 18.8%, which is among the highest efficiencies obtained for binary OPVs. This work demonstrates the effectiveness of applying local isomerization to fine-tune the side-group steric effect and non-covalent interactions between side-group and backbone, therefore improving both photovoltaic performance and stability of fused ring NFA-based OPVs.

15.
Adv Mater ; 35(16): e2211296, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36689736

RESUMO

High-performance all-polymer solar cells (all-PSCs) deeply rely on the joint contributions of desirable optical absorption, adaptive energy levels, and appropriate morphology. Herein, two structural analogous polymerized small-molecule acceptors (PSMAs), PYFCl-T and PYF&PYCl-T, are synthesized, and then incorporated into the PM6:PY-IT binary blends to construct ternary all-PSCs. Due to the superior compatibility of PY-IT and PYFCl-T, the ternary all-PSC based on PM6:PY-IT:PYFCl-T with 10 wt% PYFCl-T, presents higher and more balanced charge mobility, suppressed charge recombination, and faster charge-transfer kinetics, resulting in an outstanding power conversion efficiency (PCE) of 18.12% with enhanced Jsc and FF, which is much higher than that (PCE of 16.09%) of the binary all-PSCs based on PM6:PY-IT. Besides, the ternary all-PSCs also exhibit improved photostability. The conspicuous performance enhancement principally should give the credit to the miscibility-driven phase optimization of the donor and acceptor. These findings highlight the significance of polymer-backbone configuration modulation of PSMAs in morphology optimization toward boosting the device properties of all-PSCs.

16.
Adv Mater ; 35(7): e2209350, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36413076

RESUMO

Achieving a finely tuned active layer morphology with a suitable vertical phase to facilitate both charge generation and charge transport has long been the main goal for pursuing the highly efficient bulk heterojunction all-polymer solar cells (all-PSCs). Herein, a solution to address the above challenge via synergistically combining the ternary blend strategy and the layer-by-layer (LbL) procedure is proposed. By introducing a synthesized polymer acceptor (PA ), PY-Cl, with higher crystallinity into the designed host acceptor PY-SSe-V, vertical phase distribution and molecular ordering of the LbL-type ternary all-PSCs can be improved in comparison to the LbL-type PM6/PY-SSe-V binary all-PSCs. The formation of the superior bulk microstructure can not only promote charge transport and extraction properties but also reduce energetic disorder and non-radiative recombination loss, thus improving all three photovoltaic parameters simultaneously. Consequently, the PM6/(PY-SSe-V:PY-Cl) ternary all-PSCs show the best efficiency of 18.14%, which is among the highest values reported to date for all-PSCs. This work provides a facile and effective LbL-type ternary strategy for obtaining high-efficiency all-PSCs.

17.
Clin Transplant ; 37(1): e14844, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318732

RESUMO

BACKGROUND: The impact of donor age on the immune reconstitution of patients with hematological malignancies who underwent hematopoietic cell transplantation (HCT) is unclear. METHOD: We retrospectively compared the outcomes of 381 patients who underwent allogeneic peripheral blood stem cell transplantation (PBSCT) from 308 donors under 50 years of age and 73 donors over 50 years of age. IVIG was regularly supplemented for patients in the first 3 months post-HCT. RESULTS: The counts of CD8+CD45RA+ naïve T cells were significantly lower in patients of the older donor group than in the younger donor group in the first year after PBSCT (190.6 cells/µl vs. 239.6 cells/µl, p = .018). Patients in the older donor group had significantly fewer CD19+ B cells on day +270 (123.4 cells/µl vs. 183.5 cells/µl, p = .021) and day +365 (169 cells/µl vs. 271.1 cells/µl, p = .01) after PBSCT. Serum IgA (.76 g/L vs. .97 g/L, p < .001) and IgM levels (.75 g/L vs. 1.04 g/L, p < .001) were significantly lower in patients in the older donor group from day +60 to +365 after PBSCT. The EBV reactivation rate within the first 3 months after PBSCT was significantly higher in patients in the older donor group (48.6% vs. 38.3%, p = .034). However, the incidences of CMV reactivation, II-IV acute graft-versus-host disease (aGvHD), chronic GvHD (cGvHD), 3-year relapse rate, 3-year transplant-related mortality (TRM) and 3-year overall survival (OS) were not significantly different between the two groups. CONCLUSION: In conclusion, donors ≥50 years old were associated with inferior immune reconstitution and higher EBV reactivation in patients after PBSCT, but no change in OS.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Transplante de Células-Tronco de Sangue Periférico , Idoso , Humanos , Pessoa de Meia-Idade , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Recidiva Local de Neoplasia/etiologia , Transplante de Células-Tronco de Sangue Periférico/efeitos adversos , Estudos Retrospectivos
18.
Macromol Rapid Commun ; 44(5): e2200753, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36377477

RESUMO

The power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs) has ascended rapidly arising from the development of polymerized small-molecule acceptor materials. However, numerous insulating long alkyl chains, which ensure the solubility of the polymer, result in inferior aggregation and charge mobility. Herein, this study proposes a facile random copolymerization strategy of two small molecule acceptor units with different lengths of alkyl side chains and synthesizes a series of polymer acceptors PYT-EHx, where x is the percentage of the short alkyl chain units. The aggregation strength and charge mobility of the acceptors rise linearly with increasing the proportion of short alkyl chain units. Thus, the PYT-EH20 reaches balanced aggregation with the star polymer donor PBDB-T, resulting in optimal morphology, fastest carrier transport, and reduced recombination and energy loss. Consequently, the PYT-EH20-based device yields a 14.8% PCE, a 16% improvement over the control PYT-EH0-based device, accompanied by an increase in open-circuit voltage (Voc ), short-circuit current density (Jsc ), and fill factor (FF). This work demonstrates that the random copolymerization strategy with short alkyl chain insertion is an effective avenue for developing high-performance polymer acceptors, which facilitates further advances in the efficiency of all-PSCs.


Assuntos
Polímeros , Polimerização , Solubilidade
19.
J Agric Food Chem ; 70(50): 15747-15762, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36474430

RESUMO

Inflammatory bowel disease (IBD) is a global chronic disease with a long duration and repeated relapse. Currently, there is still a lack of effective approaches to prevent IBD. Food-derived oryzanol (ORY) possesses extensive biological activities, such as ameliorating bowel diseases, antioxidation, and antiobesity. However, the mechanism of ORY in preventing colitis remains unclear. The present research aims to explore the potential mechanism of ORY in dextran sulfate sodium (DSS)-stimulated colitis in a rat model. The results showed that the symptoms of colitis were significantly improved with the administration of ORY. Mechanismly, the expression levels of Zonula occludens-1 (ZO-1), Claudin-1, Occludin, MUC2, and TFF3 were elevated through ORY treatment, suggesting that oral ORY relieved the degree of gut barrier damage of colitis rats. Meanwhile, 16S sequencing results found that ORY supplementation increased the abundances of Alloprevotella, Roseburia, Treponema, Muribaculaceae, and Ruminococcus, which are associated with the synthesis of short-chain fatty acids (SCFAs). Moreover, GC-MS results confirmed that ORY supplementation reversed the DSS-induced reduction of acetic acid, butyric acid, and total acid. Further research indicated that ORY intervention downregulated the TLR4/NF-κB/NLRP3 pathway, which is closely linked to the expression of proinflammatory cytokines and colon injury. Taken together, ORY ameliorates DSS-stimulated gut barrier damage and inflammatory responses via the gut microbiota-TLR4/NF-κB/NLRP3 signaling axis.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Ratos , Ácido Butírico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Colo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , NF-kappa B/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptor 4 Toll-Like/genética
20.
Cell Transplant ; 31: 9636897221139103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36433646

RESUMO

Maternal and collateral donors were associated with a higher incidence of graft-versus-host disease (GvHD) after haploidentical hematopoietic stem cell transplantation (haplo-HSCT). A more effective regimen for GvHD prophylaxis after haplo-HSCT with maternal/collateral donors needed to be explored. A retrospective study was performed on 62 patients after haploidentical peripheral blood stem cell transplantation (haplo-PBSCT) with maternal/collateral donors, which included 35 patients with low-dose antithymocyte globulin (ATG) plus low-dose posttransplant cyclophosphamide-based (low-dose ATG/PTCy-based) and 27 with ATG-based regimens for GvHD prophylaxis. The 180-day cumulative incidences (CIs) of grades II-IV and III-IV acute GvHD (aGvHD) were 17.7% and 6.8% in low-dose ATG/PTCy-based group, which were significantly lower than that in ATG-based group (55.4% and 31.9%) (P = 0.003 for grade II-IV and P = 0.007 for III-IV aGvHD). In low-dose ATG/PTCy-based group, the 1-year overall survival (OS) and relapse-free survival (RFS) were 80.0%and 80.4%, which were higher than that in ATG-based group with OS of 59.4% and RFS of 62.0%. In multivariate analysis, the low-dose ATG/PTCy-based regimen significantly reduced the risk of grade II-IV (HR = 0.357; P = 0.049) and grade III-IV aGvHD (HR = 0.190; P = 0.046) as an independent risk factor. The results suggested that the low-dose ATG/PTCy-based regimen could effectively prevent the occurrence of aGvHD after haplo-PBSCT with maternal/collateral donors compared with the ATG-based regimen.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco de Sangue Periférico , Humanos , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/etiologia , Soro Antilinfocitário/uso terapêutico , Transplante de Células-Tronco de Sangue Periférico/efeitos adversos , Condicionamento Pré-Transplante/métodos , Estudos Retrospectivos , Ciclofosfamida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...